Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611770

RESUMEN

Irritable bowel syndrome (IBS), a common gastrointestinal disorder worldwide, is characterized by chronic abdominal pain, bloating, and disordered defecation. IBS is associated with several factors, including visceral hypersensitivity, gut motility, and gut-brain interaction disorders. Because currently available pharmacological treatments cannot adequately improve symptoms and may cause adverse effects, the use of herbal therapies for managing IBS is increasing. Lysimachia vulgaris var. davurica (LV) is a medicinal plant used in traditional medicine to treat diarrhea. However, information on whether LV can effectively improve diarrhea-predominant IBS (IBS-D) remains limited. In this study, using an experimental mouse model of IBS-D, we elucidated the effects of the LV extract. The methanol extract of LV decreased fecal pellet output in the restraint stress- or 5-hydroxytryptamine (5-HT)-induced IBS mouse model and inhibited 5-HT-mediated [Ca2+]i increase in a dose-dependent manner. Furthermore, we developed and validated a high-performance liquid chromatography method using two marker compounds, namely, chlorogenic acid and rutin, for quality control analysis. Our study results suggest the feasibility of the methanol extract of LV for developing therapeutic agents to treat IBS-D by acting as a 5-HT3 receptor antagonist.


Asunto(s)
Encefalopatías , Síndrome del Colon Irritable , Animales , Ratones , Síndrome del Colon Irritable/tratamiento farmacológico , Cromatografía Líquida de Alta Presión , Lysimachia , Metanol , Serotonina , Diarrea/tratamiento farmacológico , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología
2.
Cell Death Discov ; 10(1): 185, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649679

RESUMEN

Distant metastasis is a significant hallmark affecting to the high death rate of patients with triple-negative breast cancer (TNBC). Thus, it is crucial to identify and develop new therapeutic strategies to hinder cancer metastasis. While emerging studies have hinted a pivotal role of glucose-regulated protein 94 (GRP94) in tumorigenesis, the exact biological functions and molecular mechanisms of GRP94 in modulating cancer metastasis remain to be elucidated. Our study demonstrated an increased expression of GRP94 in TNBC correlated with metastatic progression and unfavorable prognosis in patients. Functionally, we identified that GRP94 depletion significantly diminished TNBC tumorigenesis and subsequent lung metastasis. In contrast, GRP94 overexpression exacerbated the invasiveness, migration, and lung metastasis of non-TNBC cells. Mechanistically, we found that casein kinase 2 alpha (CK2α) active in advanced breast cancer phosphorylated GRP94 at a conserved serine 306 (S306) residue. This phosphorylation increased the stability of GRP94 and enhanced its interaction with LRP6, leading to activation of canonical Wnt signaling. From a therapeutic standpoint, we found that benzamidine, a novel CK2α inhibitor, effectively suppressed GRP94 phosphorylation, LRP6 stabilization, and metastasis of TNBC. Our results point to the critical role of CK2α-mediated GRP94 phosphorylation in TNBC metastasis through activation of Wnt signaling, highlighting GRP94 as a therapeutic target to impede TNBC metastasis.

3.
J Korean Med Sci ; 38(48): e355, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38084023

RESUMEN

BACKGROUND: Mutations in mitochondrial DNA (mtDNA) are associated with several genetic disorders, including sensorineural hearing loss. However, the prevalence of mtDNA mutations in a large cohort of Korean patients with hearing loss has not yet been investigated. Thus, this study aimed to investigate the frequency of mtDNA mutations in a cohort of with pre- or post-lingual hearing loss of varying severity. METHODS: A total of 711 Korean families involving 1,099 individuals were evaluated. Six mitochondrial variants associated with deafness (MTRNR1 m.1555A>G, MTTL1 m.3243A>G, MTCO1 m.7444G>A and m.7445A>G, and MTTS1 m.7471dupC and m.7511T>C) were screened using restriction fragment length polymorphism. The prevalence of the six variants was also analyzed in a large control dataset using whole-genome sequencing data from 4,534 Korean individuals with unknown hearing phenotype. RESULTS: Overall, 12 of the 711 (1.7%) patients with hearing loss had mtDNA variants, with 10 patients from independent families positive for the MTRNR1 m.1555A>G mutation and 2 patients positive for the MTCO1 m.7444G>A mutation. The clinical characteristics of patients with the mtDNA variants were characterized by post-lingual progressive hearing loss due to the m.1555A>G variant (9 of 472; 1.9%). In addition, 18/4,534 (0.4%) of the Korean population have mitochondrial variants associated with hearing loss, predominantly the m.1555A>G variant. CONCLUSION: A significant proportion of Korean patients with hearing loss is affected by the mtDNA variants, with the m.1555A>G variant being the most prevalent. These results clarify the genetic basis of hearing loss in the Korean population and emphasize the need for genetic testing for mtDNA variants.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Humanos , Prevalencia , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética , Mutación , ADN Mitocondrial/genética , República de Corea/epidemiología
4.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138587

RESUMEN

Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a complex gastrointestinal disorder with a multifactorial etiology, including environmental triggers, autoimmune mechanisms, and genetic predisposition. Despite advancements in therapeutic strategies for IBD, its associated mortality rate continues to rise, which is often attributed to unforeseen side effects of conventional treatments. In this context, we explored the potential of Ecklonia cava extract (ECE), derived from an edible marine alga known for its anti-inflammatory and antioxidant properties, in mitigating IBD. This study investigated the effectiveness of ECE as a preventive agent in a murine model of dextran sulfate sodium (DSS)-induced colitis. Our findings revealed that pretreatment with ECE significantly ameliorated colitis severity, as evidenced by increased colon length, reduced spleen weight, and histological improvements demonstrated by immunohistochemical analysis. Furthermore, ECE significantly attenuated the upregulation of inflammatory cytokines and mediators and the infiltration of immune cells known to be prominent features of colitis in mice. Notably, ECE alleviated dysbiosis of intestinal microflora and aided in the recovery of damaged intestinal mucosa. Mechanistically, ECE exhibited protective effects against pathogenic colitis by inhibiting the NLRP3/NF-κB pathways known to be pivotal regulators in the inflammatory signaling cascade. These compelling results suggest that ECE holds promise as a potential candidate for IBD prevention. It might be developed into a functional food for promoting gastrointestinal health. This research sheds light on the preventive potential of natural compounds like ECE in the management of IBD, offering a safer and more effective approach to combating this challenging disease.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Funcion de la Barrera Intestinal , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación , Enfermedades Inflamatorias del Intestino/patología , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Colon/patología
5.
Biomed Pharmacother ; 168: 115446, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918255

RESUMEN

Colistin (polymyxin E) is an antibiotic that is effective against multidrug-resistant gram-negative bacteria. However, the high incidence of nephrotoxicity caused by colistin limits its clinical use. To identify compounds that might ameliorate colistin-induced nephrotoxicity, we obtained 1707 compounds from the Korea Chemical Bank and used a high-content screening (HCS) imaging-based assay. In this way, we found that bimatoprost (one of prostaglandin F2α analogue) ameliorated colistin-induced nephrotoxicity. To further assess the effects of bimatoprost on colistin-induced nephrotoxicity, we used in vitro and in vivo models. In cultured human proximal tubular cells (HK-2), colistin induced dose-dependent cytotoxicity. The number of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, indicative of apoptosis, was higher in colistin-treated cells, but this effect of colistin was ameliorated by cotreatment with bimatoprost. The generation of reactive oxygen species, assessed using 2,7-dichlorodihydrofluorescein diacetate, was less marked in cells treated with both colistin and bimatoprost than in those treated with colistin alone. Female C57BL/6 mice (n = 10 per group) that were intraperitoneally injected with colistin (10 mg/kg/12 hr) for 14 days showed high blood urea nitrogen and serum creatinine concentrations that were reduced by the coadministration of bimatoprost (0.5 mg/kg/12 hr). In addition, kidney injury molecule-1 (KIM1) and Neutrophil gelatinase-associated lipocalin (NGAL) expression also reduced by bimatoprost administration. Further investigation in tubuloid and kidney organoids also showed that bimatoprost attenuated the nephrotoxicity by colistin, showing dose-dependent reducing effect of KIM1 expression. In this study, we have identified bimatoprost, prostaglandin F2α analogue as a drug that ameliorates colistin-induced nephrotoxicity.


Asunto(s)
Colistina , Dinoprost , Ratones , Animales , Femenino , Humanos , Colistina/farmacología , Bimatoprost/metabolismo , Bimatoprost/farmacología , Dinoprost/metabolismo , Ratones Endogámicos C57BL , Antibacterianos/toxicidad , Riñón , Prostaglandinas/metabolismo
6.
Cell Commun Signal ; 21(1): 142, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328841

RESUMEN

BACKGROUND: LRRC6 is an assembly factor for dynein arms in the cytoplasm of motile ciliated cells, and when mutated, dynein arm components remained in the cytoplasm. Here, we demonstrate the role of LRRC6 in the active nuclear translocation of FOXJ1, a master regulator for cilia-associated gene transcription. METHODS: We generated Lrrc6 knockout (KO) mice, and we investigated the role of LRRC6 on ciliopathy development by using proteomic, transcriptomic, and immunofluorescence analysis. Experiments on mouse basal cell organoids confirmed the biological relevance of our findings. RESULTS: The absence of LRRC6 in multi-ciliated cells hinders the assembly of ODA and IDA components of cilia; in this study, we showed that the overall expression of proteins related to cilia decreased as well. Expression of cilia-related transcripts, specifically ODA and IDA components, dynein axonemal assembly factors, radial spokes, and central apparatus was lower in Lrrc6 KO mice than in wild-type mice. We demonstrated that FOXJ1 was present in the cytoplasm and translocated into the nucleus when LRRC6 was expressed and that this process was blocked by INI-43, an importin α inhibitor. CONCLUSIONS: Taken together, these results hinted at the LRRC6 transcriptional regulation of cilia-related genes via the nuclear translocation of FOXJ1. Video Abstract.


Asunto(s)
Cilios , Dineínas , Factores de Transcripción Forkhead , Animales , Ratones , Cilios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Ratones Noqueados , Proteínas/genética , Proteómica , Proteínas del Citoesqueleto/metabolismo
7.
Mol Oncol ; 17(11): 2380-2395, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37341064

RESUMEN

The incidence of colitis-associated colorectal cancer (CAC) has increased due to a high-nutrient diet, increased environmental stimuli and inherited gene mutations. To adequately treat CAC, drugs should be developed by identifying novel therapeutic targets. E3 ubiquitin-protein ligase pellino homolog 3 (pellino 3; Peli3) is a RING-type E3 ubiquitin ligase involved in inflammatory signalling; however, its role in the development and progression of CAC has not been elucidated. In this study, we studied Peli3-deficient mice in an azoxymethane/dextran sulphate sodium-induced CAC model. We observed that Peli3 promotes colorectal carcinogenesis with increased tumour burden and oncogenic signalling pathways. Ablation of Peli3 reduced inflammatory signalling activation at the early stage of carcinogenesis. Mechanistic studies indicate that Peli3 enhances toll-like receptor 4 (TLR4)-mediated inflammation through ubiquitination-dependent degradation of interferon regulatory factor 4, a negative regulator of TLR4 in macrophages. Our study suggests an important molecular link between Peli3 and colonic inflammation-mediated carcinogenesis. Furthermore, Peli3 can be a therapeutic target in the prevention and treatment of CAC.


Asunto(s)
Neoplasias Asociadas a Colitis , Receptor Toll-Like 4 , Animales , Ratones , Carcinogénesis/genética , Neoplasias Asociadas a Colitis/genética , Inflamación/complicaciones , Factores Reguladores del Interferón/metabolismo , Ratones Endogámicos C57BL , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Exp Mol Med ; 55(4): 844-859, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37009795

RESUMEN

Pathogenic variants of KCNQ4 cause symmetrical, late-onset, progressive, high-frequency-affected hearing loss, which eventually involves all frequencies with age. To understand the contribution of KCNQ4 variants to hearing loss, we analyzed whole-exome and genome sequencing data from patients with hearing loss and individuals whose hearing phenotypes were unknown. In KCNQ4, we identified seven missense variants and one deletion variant in 9 hearing loss patients and 14 missense variants in the Korean population with an unknown hearing loss phenotype. The p.R420W and p.R447W variants were found in both cohorts. To investigate the effects of these variants on KCNQ4 function, we performed whole-cell patch clamping and examined their expression levels. Except for p.G435Afs*61, all KCNQ4 variants exhibited normal expression patterns similar to those of wild-type KCNQ4. The p.R331Q, p.R331W, p.G435Afs*61, and p.S691G variants, which were identified in patients with hearing loss, showed a potassium (K+) current density lower than or similar to that of p.L47P, a previously reported pathogenic variant. The p.S185W and p.R216H variants shifted the activation voltage to hyperpolarized voltages. The channel activity of the p.S185W, p.R216H, p.V672M, and p.S691G KCNQ4 proteins was rescued by the KCNQ activators retigabine or zinc pyrithione, whereas p.G435Afs*61 KCNQ4 proteins were partially rescued by sodium butyrate, a chemical chaperone. Additionally, the structure of the variants predicted using AlphaFold2 showed impaired pore configurations, as did the patch-clamp data. Our findings suggest that KCNQ4 variants may be overlooked in hearing loss that starts in adulthood. Some of these variants are medically treatable; hence, genetic screening for KCNQ4 is important.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Linaje , Pérdida Auditiva/genética , Sordera/genética , Audición , Mutación Missense , Canales de Potasio KCNQ/genética
9.
Front Med (Lausanne) ; 10: 1089159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035301

RESUMEN

Introduction: Mutations in ADAMTS9 cause nephronophthisis-related ciliopathies (NPHP-RC), which are characterized by multiple developmental defects and kidney diseases. Patients with NPHP-RC usually have normal glomeruli and negligible or no proteinuria. Herein, we identified novel compound-heterozygous ADAMTS9 variants in two siblings with NPHP-RC who had glomerular manifestations, including proteinuria. Methods: To investigate whether ADAMTS9 dysfunction causes NPHP and glomerulopathy, we differentiated ADAMTS9 knockout human induced pluripotent stem cells (hiPSCs) into kidney organoids. Single-cell RNA sequencing was utilized to elucidate the gene expression profiles from the ADAMTS9 knockout kidney organoids. Results: ADAMTS9 knockout had no effect on nephron differentiation; however, it reduced the number of primary cilia, thereby recapitulating renal ciliopathy. Single-cell transcriptomics revealed that podocyte clusters express the highest levels of ADAMTS9, followed by the proximal tubules. Loss of ADAMTS9 increased the activity of multiple signaling pathways, including the Wnt/PCP signaling pathway, in podocyte clusters. Conclusions: Mutations in ADMATS9 cause a glomerulotubular nephropathy in kidney and our study provides insights into the functional roles of ADMATS9 in glomeruli and tubules.

10.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499297

RESUMEN

Heat shock proteins (HSPs) are highly conserved molecular chaperones with diverse cellular activities, including protein folding, assembly or disassembly of protein complexes, and maturation process under diverse stress conditions. HSPs also play essential roles in tumorigenesis, metastasis, and therapeutic resistance across cancers. Among them, HSP40s are widely accepted as regulators of HSP70/HSP90 chaperones and an accumulating number of biological functions as molecular chaperones dependent or independent of either of these chaperones. Despite large numbers of HSP40s, little is known about their physiologic roles, specifically in cancer progression. This article summarizes the multi-faceted role of DNAJB proteins as one subclass of the HSP40 family in cancer development and metastasis. Regulation and deregulation of DNAJB proteins at transcriptional, post-transcriptional, and post-translational levels contribute to tumor progression, particularly cancer metastasis. Furthermore, understanding differences in function and regulating mechanism between DNAJB proteins offers a new perspective on tumorigenesis and metastasis to improve therapeutic opportunities for malignant diseases.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Neoplasias , Humanos , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Pliegue de Proteína , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
11.
Biomedicines ; 10(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35453549

RESUMEN

Autosomal dominant hearing loss (ADHL) manifests as an adult-onset disease or a progressive disease. MYO7A variants are associated with DFNA11, a subtype of ADHL. Here, we examined the role and genotype-phenotype correlation of MYO7A in ADHL. Enrolled families suspected of having post-lingual sensorineural hearing loss were selected for exome sequencing. Mutational alleles in MYO7A were identified according to ACMG guidelines. Segregation analysis was performed to examine whether pathogenic variants segregated with affected status of families. All identified pathogenic variants were evaluated for a phenotype-genotype correlation. MYO7A variants were detected in 4.7% of post-lingual families, and 12 of 14 families were multiplex. Five potentially pathogenic missense variants were identified. Fourteen variants causing autosomal dominant deafness were clustered in motor and MyTH4 domains of MYO7A protein. Missense variants in the motor domain caused late onset of hearing loss with ascending tendency. A severe audiological phenotype was apparent in individuals carrying tail domain variants. We report two new pathogenic variants responsible for DFNA11 in the Korean ADHL population. Dominant pathogenic variants of MYO7A occur frequently in motor and MyTH4 domains. Audiological differences among individuals correspond to specific domains which contain the variants. Therefore, appropriate rehabilitation is needed, particularly for patients with late-onset familial hearing loss.

12.
Autophagy ; 18(11): 2593-2614, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35253614

RESUMEN

Intracellular accumulation of mutant proteins causes proteinopathies, which lack targeted therapies. Autosomal dominant hearing loss (DFNA67) is caused by frameshift mutations in OSBPL2. Here, we show that DFNA67 is a toxic proteinopathy. Mutant OSBPL2 accumulated intracellularly and bound to macroautophagy/autophagy proteins. Consequently, its accumulation led to defective endolysosomal homeostasis and impaired autophagy. Transgenic mice expressing mutant OSBPL2 exhibited hearing loss, but osbpl2 knockout mice or transgenic mice expressing wild-type OSBPL2 did not. Rapamycin decreased the accumulation of mutant OSBPL2 and partially rescued hearing loss in mice. Rapamycin also partially improved hearing loss and tinnitus in individuals with DFNA67. Our findings indicate that dysfunctional autophagy is caused by mutant proteins in DFNA67; hence, we recommend rapamycin for DFNA67 treatment.Abbreviations: ABR: auditory brainstem response; ACTB: actin beta; CTSD: cathepsin D; dB: decibel; DFNA67: deafness non-syndromic autosomal dominant 67; DPOAE: distortion product otoacoustic emission; fs: frameshift; GFP: green fluorescent protein; HsQ53R-TG: human p.Q53Rfs*100-transgenic: HEK 293: human embryonic kidney 293; HFD: high-fat diet; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSHL: non-syndromic hearing loss; OHC: outer hair cells; OSBPL2: oxysterol binding protein-like 2; SEM: scanning electron microscopy; SGN: spiral ganglion neuron; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TG: transgenic; WES: whole-exome sequencing; YUHL: Yonsei University Hearing Loss; WT: wild-type.


Asunto(s)
Sordera , Receptores de Esteroides , Animales , Humanos , Ratones , Autofagia/genética , Sordera/genética , Células HEK293 , Ratones Noqueados , Ratones Transgénicos , Proteínas Mutantes , Mutación/genética , Receptores de Esteroides/genética , Sirolimus/farmacología
13.
Hum Genet ; 141(3-4): 915-927, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34519870

RESUMEN

Ski-slope hearing loss (HL), which refers to increased auditory threshold at high frequencies, is common in adults. However, genetic contributions to this post-lingual HL remain largely unknown. Here, we prospectively investigated deafness-associated and novel candidate genes causing ski-slope HL. We analyzed 192 families with post-lingual HL via gene panel and/or exome sequencing. With an overall molecular diagnostic rate of 35.4% (68/192) in post-lingual HL, ski-slope HL showed a lower diagnostic rate (30.7%) compared with other conditions (40.7%). In patients who showed HL onset before the age of 40, genetic diagnostic probability was significantly lower for ski-slope HL than for other conditions. Further analysis of 51 genetically undiagnosed patients in the ski-slope HL group identified three variants in delta-like ligand 1 (DLL1), a Notch ligand, which presented in vitro gain-of-function effects on Notch downstream signaling. In conclusion, genetic diagnostic rates in post-lingual HL varied according to audiogram patterns with age-of-onset as a confounding factor. DLL1 was identified as a candidate gene causing ski-slope HL.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Adulto , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Pruebas Auditivas , Humanos , Ligandos , Patología Molecular , Linaje , Secuenciación del Exoma
14.
Hum Genet ; 141(3-4): 889-901, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34529116

RESUMEN

This phenotype-genotype study aimed to investigate the extent of audioprofile variability related to cochlin major domains and to identify potential ethnic-specific differences associated with COCH-related hearing loss. Eight Korean families (26 cases) were diagnosed with COCH-related hearing loss by exome sequencing. Audiometric test results were combined with those from nine published East Asian families (20 cases) and compared with those from 38 European-descent families (277 cases). Audioprofiles were created by grouping audiometric test results into age ranges by age at testing and then averaging hearing loss thresholds by frequency within age ranges. The functional impact of the identified variants was assessed in vitro by examining the intracellular trafficking, secretion, and cleavage of cochlin. In both East Asian and European-descent families segregating COCH-related hearing loss, deafness-associated variants in non-LCCL domains of cochlin were associated with hearing loss that was more severe earlier in life than hearing loss caused by variants in the LCCL domain. Consistent with this phenotypic difference, functional studies demonstrated distinct pathogenic mechanisms for COCH variants in a domain-dependent manner; specifically, a cytotoxic effect was observed for the p.Phe230Leu variant, which is located in the vWFA1 domain. No ethnic-specific differences in hearing loss progression were observed, except for those attributable to an overrepresentation of presymptomatic cases in the European-descent cohort.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Humanos , Sordera/genética , Proteínas de la Matriz Extracelular/genética , Genotipo , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Linaje , Fenotipo
15.
Cell Death Dis ; 12(5): 461, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966034

RESUMEN

DNAJB9, a member of the heat shock protein 40 family, acts as a multifunctional player involved in the maintenance of their client proteins and cellular homeostasis. However, the mechanistic action of DNAJB9 in human malignancies is yet to be fully understood. In this study, we found that ectopic restoration of DNAJB9 inhibits the migration, invasion, in vivo metastasis, and lung colonization of triple-negative breast cancer (TNBC) cells. Mechanistically, DNAJB9 stabilizes FBXO45 protein by suppressing self-ubiquitination and reduces the abundance of ZEB1 by Lys48-linked polyubiquitination to inhibit the epithelial-mesenchymal transition (EMT) and metastasis. Clinically, the reduction of DNAJB9 expression, concomitant with decreased FBXO45 abundance in breast cancer tissues, correlates with poorer clinical outcomes of patients with breast cancer. Taken together, our results provide a novel insight into the metastasis of TNBC and define a promising therapeutic strategy for cancers with overactive ZEB1 by regulating the DNAJB9-FBXO45 signaling axis.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/patología
16.
Hear Res ; 404: 108227, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33784549

RESUMEN

Autosomal recessive nonsyndromic hearing loss 3 (DFNB3) mainly leads to congenital and severe-to-profound hearing impairment, which is caused by variants in MYO15A. However, audiological heterogeneity in patients with DFNB3 hinders precision medicine in hearing rehabilitation. Here, we aimed to elucidate the heterogeneity of the auditory phenotypes of MYO15A variants according to the affected domain and the feasibilities for acoustic stimulation. We conducted whole-exome sequencing for 10 unrelated individuals from seven multiplex families with DFNB3; 11 MYO15A variants, including the novel frameshift c.900delT (p.Pro301Argfs*143) and nonsense c.4879G > T (p.Glu1627*) variants, were identified. In seven probands, residual hearing at low frequencies was significantly higher in the groups with one or two N-terminal frameshift variants in trans conformation compared to that in the group without these variants. This is consistent with the 56 individuals from the previously published reports that carried a varying number of N-terminal truncating variants in MYO15A. In addition, patients with missense variants in the second FERM domain had better hearing at low frequencies than patients without these variants. Subsequently, acoustic stimulation provided by devices such as hearing aids or cochlear implants was feasible in patients with one or two N-terminal truncating variants or a second FERM missense variant. In conclusion, N-terminal or second FERM variants in MYO15A allow the practical use of acoustic stimulation through hearing aids or electroacoustic stimulation for aural rehabilitation.


Asunto(s)
Implantes Cocleares , Audífonos , Miosinas/genética , Estimulación Acústica , Estudios de Factibilidad , Variación Genética , Pérdida Auditiva Sensorineural , Humanos , Linaje
18.
Exp Mol Med ; 52(4): 594-603, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238860

RESUMEN

PLCE1 encodes phospholipase C epsilon, and its mutations cause recessive nephrotic syndrome. However, the mechanisms by which PLCE1 mutations result in defects associated with glomerular function are not clear. To address this, we investigated the function of PLCE1 in podocytes called glomerular epithelial cells, where the pathogenesis of nephrotic syndrome converges. PLCE1 colocalized with Rho GTPases in glomeruli. Further, it interacted with Rho GTPases through the pleckstrin homology domain and Ras GTP-binding domains 1/2. Knockdown or knockout of PLCE1 in podocytes resulted in decreased levels of GTP-bound Rac1 and Cdc42, but not those of RhoA, and caused a reduction in cell migration. PLCE1 interacted with NCK2 but not with NCK1. Similar to the PLCE1 knockout, NCK2 knockout resulted in decreased podocyte migration. Knockout of PLCE1 reduced the EGF-induced activation of ERK and cell proliferation in podocytes, whereas knockout of NCK2 did not affect proliferation. Further, the knockout of PLCE1 also resulted in decreased expression of podocyte markers, including NEPH1, NPHS1, WT1, and SYNPO, upon differentiation, but the knockout of NCK2 did not affect the expression of these markers. Therefore, our findings demonstrate that PLCE1 regulates Rho GTPase activity and cell migration through interacting with NCK2 and that PLCE1 also plays a role in the proliferation and differentiation of podocytes, regardless of the presence of NCK2.


Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular/genética , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Podocitos/citología , Podocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Proteínas Oncogénicas/metabolismo , Unión Proteica , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
Anal Chem ; 92(9): 6327-6333, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32286047

RESUMEN

Flexibile biosensors have a lot of applications in measuring the concentration of target bioanalytes. In combination with its flexibility, electrochemical sensors containing 2D materials have particular advantages such as enlarged area compatibility, transparency, and high scalability. A flexible biosensor was fabricated by direct synthesis of molybdenum disulfide (MoS2) on a polyimide (PI) substrate, which can be used as the working electrode in electrochemistry platforms. The direct formation of 2D-MoS2 on the PI was achieved using plasma-enhanced chemical vapor deposition (PE-CVD). Since the MoS2 provides higher electrical conductivity, the MoS2-Au-PI flexible sensor is able to provide highly sensitive detection of target proteins with a relatively fast response via cyclic voltammetry. To evaluate the high performance of the fabricated sensor, we selected the endocrine-related hormones parathyroid hormone (PTH), triiodothyronine (T3), and thyroxine (T4) as analytes because they are one of the most important markers for the determination of endocrinopathy, however, they are very difficult to quantify. The newly developed biosensor achieved highly sensitive detection of the hormones and could determine their location with high accuracy. In addition, we performed electrochemical measurements of hormones obtained from 30 clinical patients' sera with confirmed agreement and compared with the measurements performed with standard immunoassay equipment (E 170, Roche Diagnostics, Germany).


Asunto(s)
Técnicas Biosensibles/métodos , Disulfuros/química , Molibdeno/química , Hormona Paratiroidea/análisis , Resinas Sintéticas/química , Tiroxina/análisis , Triyodotironina/análisis , Técnicas Electroquímicas , Electrodos , Oro/química , Humanos , Hormona Paratiroidea/sangre , Tiroxina/sangre , Triyodotironina/sangre
20.
Exp Mol Med ; 51(8): 1-12, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434872

RESUMEN

KCNQ4 is frequently mutated in autosomal dominant non-syndromic hearing loss (NSHL), a typically late-onset, initially high-frequency loss that progresses over time (DFNA2). Most KCNQ4 mutations linked to hearing loss are clustered around the pore region of the protein and lead to loss of KCNQ4-mediated potassium currents. To understand the contribution of KCNQ4 variants to NSHL, we surveyed public databases and found 17 loss-of-function and six missense KCNQ4 variants affecting amino acids around the pore region. The missense variants have not been reported as pathogenic and are present at a low frequency (minor allele frequency < 0.0005) in the population. We examined the functional impact of these variants, which, interestingly, induced a reduction in potassium channel activity without altering expression or trafficking of the channel protein, being functionally similar to DFNA2-associated KCNQ4 mutations. Therefore, these variants may be risk factors for late-onset hearing loss, and individuals harboring any one of these variants may develop hearing loss during adulthood. Reduced channel activity could be rescued by KCNQ activators, suggesting the possibility of medical intervention. These findings indicate that KCNQ4 variants may contribute more to late-onset NSHL than expected, and therefore, genetic screening for this gene is important for the prevention and treatment of NSHL.


Asunto(s)
Bases de Datos Genéticas , Pérdida Auditiva/genética , Activación del Canal Iónico/genética , Canales de Potasio KCNQ/genética , Mutación , Animales , Células CHO , Cricetinae , Cricetulus , Sordera/genética , Sordera/fisiopatología , Frecuencia de los Genes , Células HEK293 , Audición/genética , Pérdida Auditiva/fisiopatología , Humanos , Activación del Canal Iónico/fisiología , Sector Público
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...